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Abstract Cold-water corals (CWC), dominantly Desmo-

phyllum pertusum (previously Lophelia pertusa), and their

mounds have been in the focus of marine research during

the last two decades; however, little is known about the

mound-forming capacity of other CWC species. Here, we

present new 230Th/U age constraints of the relatively rarely

studied framework-building CWC Solenosmilia variabilis

from a mound structure off the Brazilian margin combined

with computed tomography (CT) acquisition. Our results

show that S. variabilis can also contribute to mound for-

mation, but reveal coral-free intervals of hemipelagic

sediment deposits, which is in contrast to most of the

previously studied CWC mound structures. We demon-

strate that S. variabilis only occurs in short episodes of\ 4

kyr characterized by a coral content of up to 31 vol%. In

particular, it is possible to identify distinct clusters of

enhanced aggradation rates (AR) between 54 and

80 cm ka-1. The determined AR are close to the maximal

growth rates of individual S. variabilis specimens, but are

still up to one order of magnitude smaller than the AR of D.

pertusum mounds. Periods of enhanced S. variabilis AR

predominantly fall into glacial periods and glacial termi-

nations that were characterized by a 60–90 m lower sea
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level. The formation of nearby D. pertusum mounds is also

associated with the last glacial termination. We suggest

that the short-term periods of coral growth and mound

formation benefited from enhanced organic matter supply,

either from the adjacent exposed shelf and coast and/or

from enhanced sea-surface productivity. This organic

matter became concentrated on a deeper water-mass

boundary between South Atlantic Central Water and the

Antarctic Intermediate Water and may have been dis-

tributed by a stronger hydrodynamic regime. Finally,

periods of enhanced coral mound formation can also be

linked to advection of nutrient-rich intermediate water

masses that in turn might have (directly or indirectly)

further facilitated coral growth and mound formation.

Keywords Cold-water corals � South Atlantic � 230Th/U �
Computed tomography

Introduction

Framework-building scleractinian cold-water corals

(CWC) are one of the most important ecosystem engineers

of the deep sea (e.g. Freiwald 2002; Roberts et al. 2006;

Frank et al. 2011; Hebbeln et al. 2019; Raddatz and

Rüggeberg 2019). The initial settlement of CWCs gener-

ally occurs on continental slopes and shelves, seamounts or

oceanic ridges (Roberts et al. 2006). CWCs have been able

to form reef- and mound-like structures on the European

(Roberts et al. 2009) and African (Wienberg et al. 2018)

continental margin, the Mediterranean (e.g. Freiwald et al.

2009), the Caribbean and in the Gulf of Mexico (e.g.

Hebbeln et al. 2014), on the continental margin off South

America in the South Atlantic (Viana et al. 1998; Sumida

et al. 2004) and have also been reported from the Indian

Ocean (e.g. Western Australia, Trotter et al. 2019) and the

NE Pacific (e.g. Lumsden et al. 2007). The main con-

structors of coral mounds are the framework-building

CWCs Desmophyllum pertusum (new combination of the

former species Lophelia pertusa as suggested by Addamo

et al. (2016), that still needs further validation) and

Madrepora oculata. Coral mound development strongly

depends on the proliferation of the scleractinian CWC

species and is a result of the balance between coral growth

and sediment input. Furthermore, coral mounds are typi-

cally characterized by a composition of [ 50% hemi-

pelagic sediments and loose interspersion of coral

fragments and other shell-building organisms (Titschack

et al. 2015; Wienberg and Titschack 2017). They can be

subdivided into (I) ‘‘active’’ mounds that are characterized

by a flourishing coral community and ongoing mound

aggradation and (II) ‘‘dormant’’ mounds, which are cur-

rently not covered by a vivid coral community and exhibit

no significant mound aggradation (Wienberg and Titschack

2017). Here, we follow the terminology of these seabed

structures by Wienberg and Titschack (2017) which

implies that all three-dimensional structures formed at least

periodically by CWCs are termed coral mounds.

Off Brazil, CWC mounds were reported first by Viana

et al. (1998) and Sumida et al. (2004). Since then there is

growing evidence that the Brazilian continental slope is an

important region of vital CWC habitats characterized by a

high biodiversity (Kitahara 2006, 2007; Pires 2007; Pires

et al. 2014; Carvalho et al. 2016). In particular, on the

Brazilian continental margin D. pertusum, Enallopsammia

rostrata and S. variabilis are the known framework-

building corals (Fig. 1; Freiwald et al. 2017 and references

therein; Pires 2007). CWC mounds along the continental

slope are found at intermediate water depth between 500

and 1000 m and are up to 70 m in height and 180–360 m in

width (Arantes et al. 2009; Sumida et al. 2004; Viana et al.

1998). Mound formation driven by the growth of the CWC

D. pertusum is documented during the last 25 kyr in the

Campos and Santos Basin (Mangini et al. 2010; Henry

et al. 2014). In contrast, little is known about the mound-

forming potential of S. variabilis corals. In general, S.

variabilis occurrences have been reported from the Atlan-

tic, Pacific and Indian Ocean (Fig. 1, Zibrowius

1973, 1980; Cairns 1995; Freiwald et al. 2017; Trotter et al.

2019) and are often associated with D. pertusum occur-

rences, but at greater water depth (Zibrowius 1980;

Zibrowius, pers. comm.; Roberts et al. 2009, Freiwald et al.

2017). Best studied are the S. variabilis occurrences from

the SW Pacific in water depths ranging from 220 to 2165 m

with densest aggregations between 1000 and 1300 m off

New Zealand and Australia (Koslow et al. 2001; Tracey

et al. 2011: Bostock et al. 2015; Fallon et al. 2014;

Thresher et al. 2014). The environmental controlling fac-

tors of modern S. variabilis reefs are not well studied.

However, S. variabilis occurrences appear typically

between 3 and 4 �C, which is at least 3 �C colder than

flourishing D. pertusum mounds (Fallon et al. 2014; Flögel

et al. 2014; Gammon et al. 2018). Moreover, S. variabilis

habitats are found in less aragonite saturated waters

(Thresher et al. 2011; Bostock et al. 2015; Gammon et al.

2018) compared to flourishing D. pertusum reefs and

mounds (Flögel et al. 2014). Nevertheless, whether these

different ecological tolerances enable S. variabilis to form

mounds is unknown. Moreover, a comparison of different

framework-building CWCs may further help to constrain

factors that promote or inhibit mound formation.

Here, we present a mound that is periodically formed by

the CWC S. variabilis and (1) reconstruct its temporal

development and (2) discuss the environmental controlling

factors favourable for its formation. Our study is based on a

combination of computed tomography (CT) acquisitions of
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a sediment core retrieved from the top of a 25 m high

mound structure (Bowie Mound, Fig. 2, Bahr et al. 2016)

and 230Thorium/Uranium age determinations on the coral

fragments.

Local hydrography

The ocean circulation along the continental slope of South

America at 20� S is dominated by the anticyclonic sub-

tropical gyre (Stramma and England 1999; Fig. 2). The

Salinity Maximum Water (SMW, 24 �C, rh * 25.2)

forms by excess evaporation in the tropics (Worthington

1976) and is transported westward towards the South

American coast by the South Equatorial Current (SEC).

The SEC bifurcates upon reaching the South American

shelf break at approximately 10�–14� S, continuing

northwards as the North Brazil (Under) Current and

southwards as the Brazil Current (Stramma and England

1999; Rodrigues et al. 2007). SMW occupies the upper

200 m between 12� S and 22� S (Mémery et al. 2000).

River waters mix with SMW in shelf areas to form lower

salinity Subtropical Shelf Water (SSW; Piola et al. 2002;

Venancio et al. 2014). Below the SMW, steadily decreas-

ing temperatures and salinities (20 �C, 36.0 psu to 5 �C,

34.3 psu) mark the presence of South Atlantic Central

Water (SACW) with contributions from formation areas in

the southwest Atlantic and the South Indian Ocean

(Stramma and England 1999; Sverdrup et al. 1942). The

SACW is underlain by the Antarctic Intermediate Water

(AAIW), which bathes the S. variabilis-bearing Bowie

Mound at 866 m water depth (Fig. 2). Here, the AAIW

forms a low salinity layer (\ 34.4 psu) due to the sub-

duction of cooled surface water of the Antarctic Circum-

polar Current between the Antarctic Polar Front (APF) and

the Subantarctic Front (SAF), particularly in the vicinity of

the Drake Passage and Falkland Current loop. Some AAIW

is also supplied to the South Atlantic from the Indian

Ocean via the Agulhas Current (Stramma and England.

1999). Upper North Atlantic Deep Water (UNADW) is

found below AAIW north of 26� S and can be recognized

on the basis of higher oxygen concentrations and salinities

compared to AAIW (Mémery et al. 2000).

Methods

During research expedition M125 with the German

research vessel METEOR, we retrieved the 5.86-m-long

gravity core M125-34-2 (positioning secured by Ultra-

Short-Baseline system, POSIDONIA) from the top of the

25 m high ‘‘Bowie mound’’ structure in 866 m water depth

at 21�56.9570 S and 39�53.1170 W located within a pro-

vince of mound-like structures (Fig. 2, Bahr et al. 2016).

CT images were performed for the sedimentological

characterization of the deposits and subsequent 230Th/U

age determinations to temporally constrain mound forma-

tion phases and determine mound AR. Additional on-board

Conductivity-Temperatures Depth (CTD) profiles at the

Fig. 1 Global distribution of the scleractinian framework-building

cold-water corals Desmophyllum pertusum (blue) and Solenosmilia

variabilis (red). Data taken from various sources: NIWA Invertebrate

Collection; UNEP Dataset, Freiwald et al. 2017; GloSS Dataset,

Freiwald (Unpublished)
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Campos Basin over the Bowie Mound were collected to

determine the modern hydrography.

CTD

A down-slope transect of seven CTD profiles were mea-

sured with a Seabird SBE 9 device fitted with two tem-

perature sensors, two conductivity sensors, a pressure

sensor, an oxygen sensor and a fluorometer together with a

Seabird SBE 11 plus V 5.2 deck unit. Data were taken from

the downcasts. In addition to the on-board measured sea-

water parameters, all carbonate system parameters were

calculated from existing global datasets (Global alkalinity

and TCO2; Goyet et al. 2000) with CO2sys (Lewis and

Wallace 1998).

230Th/U age determinations

The sediment surface of station 34 reveals no living corals,

but heavily coated and partly dissolved fossil coral frag-

ments of mostly S. variabilis, which were not suitable for
230Th/U age determinations. Samples from the sediment

core were selected according to the depositional intervals

with enhanced/reduced coral abundances (Section 2.5)

Fig. 2 a Map of study area showing the locations of sediment core

M125-34-2 retrieved during research cruise M125 with RV Meteor

and two other cold-water coral D. pertusum-bearing sediment cores

(C1 and C2) investigated by Mangini et al. (2010) and Henry et al.

(2014). b Bathymetric map of the coral mound province on the slope

of the Campos Basin and the Bowie Mound sampled for this study

(Bahr et al. 2016). c Close-up of the bathymetry coral mound

province and the Bowie mound (to right) revealing up to 25 m high

mound structures, the resulting backscatter image highlighting

differences in the hardness (upper panel, left) of the seafloor and its

topography (lower panel, left). d Detailed multibeam map of the

Bowie Mound indicating the core location M125-34-2. The

bathymetry was generated with an EM 122 and 702 multibeam echo

sounder and a parasound system (MBPS, Bahr et al. (2016)
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identified within the CT images. Prior to analyses, all coral

samples were cleaned mechanically to remove any con-

taminants from the skeleton surface (e.g. epibionts, bor-

ings, ferro-manganese crusts and coatings) and were then

cleaned chemically using weak acid leaching and water

rinsing according to the procedure described in Frank et al.

(2004), recently updated by Wefing et al. (2017). The

measurements were taken at the Institute for Environ-

mental Physics at Heidelberg University (IUP, Germany)

on a multi-collector inductively coupled plasma mass

spectrometer (ThermoFisher Neptune plus; Wefing et al.

2017). The reproducibility of mass-spectrometric mea-

surements was assessed using the reference material HU-1

(Cheng et al. 2000). In total 36 coral ages have been

measured. The 232Th concentrations of all analysed corals

(N = 34 S. variabilis and N = 2 M. oculata) were always

\ 4 ppb, which is indicative of minor residual contami-

nation with Th either non-carbonate phases (detritus and

coating) or seawater. Nevertheless, a correction for initial
230Th was applied prior to age determination using a
230Th/232Th activity ratio of 8 ± 4 (e.g. Mangini et al.

2010; Wefing et al. 2017).

The 234U/238U activity ratio of all the corals (given as

d234U, i.e. % deviation from secular equilibrium) plot

within uncertainty in a narrow band of ± 10% compared

to the value of modern seawater (146.8%, Fig. 3, elec-

tronic supplementary material, Andersen et al. 2010),

suggesting closed system behaviour for the exchange of U

between the skeletons and seawater or the embedding

sediment matrix. Hence, all ages given below are consid-

ered reliable.

Computed tomography measurements

Before opening (cut frozen to avoid core disturbances),

sediment core sections were imaged using a CT scanner

system (SOMATOM Definition Flash) as described in

Skornitzke et al. (2019). Briefly, sediment core sections of

1 m in length and 12 cm in diameter were manually

aligned with the main axes of the CT scanner’s coordinate

system using the integrated laser sight system of the CT

scanner. Subsequently, image acquisitions were conducted

with 140 kVp tube potential and 570 mAs tube current–

time product with a pitch of 0.4. The reconstructions of the

images were performed iteratively (ADMIRE, Siemens

Healthineers) using a sharp kernel (I70 h level 3), a slice

thickness/increment of 0.5 mm/0.3 mm, and an isotropic

voxel size of 0.35 mm. Further data processing was carried

out according to Titschack et al. (2015) using the ZIB

edition of the Amira software (Stalling et al. 2005). Briefly,

the measured core sections were virtually reunited and the

core liner and artefacts due to the coring process were

removed (2 mm of the core rim). Furthermore, coral clasts

were segmented and separated with the ContourTreeSeg-

mentation module (threshold: 1400; persistence value:

1150) and macrofossils[ 2 cm were visualized as surfaces

in 3D (for further methodological details see Titschack

et al. 2015).

Results

Local hydrography and seawater characteristics

Maximum salinities of 37.3 psu were measured in the

upper 20 m of the study area. Warm ([ 20 �C) and saline

([ 36 psu) SMW occupies the upper 150 m and below

this, a steady decline in both temperature and salinity

marks the presence of SACW (Fig. 4). The AAIW salinity

minimum (34.3 psu) is centred at * 900 m (Fig. 4). The

AAIW also exhibits the lowest oxygen concentrations in

the study area (\ 4.2 mL L-1). An increase in oxygen

concentrations and salinity below * 1400 m indicate the

contribution of UNADW to the deeper slope region

(Fig. 4). At the depths of the coral mound (866 m, taken

from Station 25-1 and Station 24-1), potential temperature

is 4.3 �C, salinity is 34.34 psu, potential density is

27.23 kg m-3, and oxygen concentration is 4.60 mL L-1

(Fig. 4; Bahr et al. 2016). The Bowie Mound is thus bathed

predominantly in AAIW. According to existing datasets

(Station 15041, 39.5� W, 21.5� S, 900 m water depth;

Goyet et al. 2000), the AAIW at 900 m water depth has a

total alkalinity (TA) of 2287 lmol kg-1, dissolved inor-

ganic carbon (DIC) of 2194 lmol kg-1, carbonate ion

135

140
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150

155

160

0 50 100 150 200

23
4 U

(‰
) in

iti
al

Age (ka)

146.8 ±10(‰)

234Useawater 

Fig. 3 Calculated d234Uinitial of the 230Th/U dates Solenosmilia

variabilis (red) and Madrepora oculata (purple) fragments. All

samples plot within uncertainty into the 146.8 ± 10% envelope

(Andersen et al. 2010) and can therefore be considered as reliable. If

not visible uncertainties of the 230Th/U ages and the d234Uinitial values

are smaller than the dots (see electronic supplementary material)
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concentrations (CO2�
3 ) of 79 lmol kg-1, a pH value of

7.97 and an aragonite saturation (X) of 1.2.

Macrofossils clast size and coral content

The sediment core is characterized by coral-bearing and

non-coral-bearing intervals. The sediment is dominantly

olive greyish silty clay. Coral-bearing intervals are indi-

cated by the presence of S. variabilis and to a minor degree

M. oculata as the major macrofossils (clast length[ 2 cm),

whereas other taxa occur only in very rare quantities (bi-

valves, gastropods, pteropods). Throughout the entire core,

the coral content varies between 0 and 31 vol%. Six coral-

bearing intervals (CI–CVI) were identified within the core

(Fig. 5). In detail, CI occurs between 5.5 and 13 cm with an

average coral content of 9 vol% and maximum of 19 vol%.

CII is located at 80–105 cm with an average coral content

of 13 vol% and a maximum of 23 vol%. Between 131.5

and 138 cm CIII exhibits coral contents of on average 14

vol% and a maximum 16 vol%. CIII is separated from CIV

by a thin coral-free interval at about 150 cm core depth.

Interval CIV (157 cm to 190 cm) reveals coral contents of

on average 11 vol% and maximal 23 vol%. The subsequent

interval CV between 479.5 and 480.5 has only a minor

coral content of maximal 3 vol%, whereas the last interval

CVI from 549.5 to 568 cm exhibits coral contents with an

average of 13 vol% and up to a maximum of 31 vol% at

576 cm.

Fig. 4 a Temperature–salinity–depth (TSD) plot including isopyc-

nals of rH of the seven CTD casts in the study area. Red star marks

the position of Bowie Mound. Identified water masses are Salinity

Maximum Water (SMW), South Atlantic Central Water (SACW),

Antarctic Intermediate Water (AAIW), and Upper North Atlantic

Deep Water (UNADW). b Downslope section including depth

intervals of the ambient water masses and their flow directions. To

the right, down-slope sections of the study area showing c potential

temperature, d salinity, e potential density, and f oxygen concentra-

tions. In each case the red star marks the seawater properties at the

depth of the Bowie Mound. Figures were generated using Ocean Data

View (Schlitzer 2017)
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Age constraints

The 230Th/U ages increase from 13.65 to 158.41 ka with

core depth (Figs. 3 and 5) while the identified coral intervals

correspond to six age clusters (Fig. 5). The youngest cluster

CI provides ages of 13.65 and 14.34 ka for its 7.5 cm of

coral-bearing sediment. The subsequent 67 cm of hemi-

pelagic sediment corresponds to 2.2 kyr according to the

coral ages of CII, which span from 16.54 to 17.01 ka. The

next 20 cm sedimentation without corals covers a period of

[ 40 kyr. The following coral-bearing unit CIII between

131.5 and 138 cm appears to be of identical or even older

age compared to CIV. CIII yields four ages between 61.15

and 63.19 ka, whereas CIV (158 and 190 cm) is constrained

by 17 dates revealing ages between 60.53 and 62.2 ka,

indicating a minor age reversal. Therefore, CIII has to be

considered with caution (Figs. 2, 5) till additional cores or

further seismic data that support this finding become

available. Coral from unit CV yield ages of 106.62 and

107.14 ka and are separated from the previous unit by 3.9 m

of hemipelagic sediments deposited again roughly in 40

kyr. The final coral-bearing unit CVI near the core base at

550 cm covers a time span ranging from 152.61 to

156.61 ka (N = 6; Fig. 5; Electronic supplementary mate-

rial). Overall, short periods of coral growth and mound

formation are followed by tens of thousands of years of

coral absence, dominated by hemipelagic sedimentation.

Aggradation (AR) and sedimentation rates (SR)

The 36 coral ages obtained build the chronostratigraphic

basis to investigate the vertical mound aggradation. We use

the concept proposed by Titschack et al. (2015) and Wien-

berg et al. (2018) for mound formation by framework-

forming corals D. pertusum and M. oculata. Coral-bearing

intervals of the Bowie Mound can clearly be identified as

they are sharply separated by coral-free deposits. AR were

calculated for each coral-bearing interval (including ages

from all dated species, hence also M. oculata samples) using

the youngest and oldest age and the total thickness of the

interval. The resulting AR for the coral-bearing intervals are

11 cm kyr-1 (CI), 54 cm kyr-1 (CII), 80 cm kyr-1 (CIII),

29 cm kyr-1 (CIV), 2 cm kyr-1 (CV) and 5 cm kyr-1 (CVI)

resulting in a mean AR of 30 cm kyr-1 and a median value of

20 cm kyr-1 (including CIII, Fig. 5).
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Fig. 5 a Downcore 230Th/U

ages of the analysed coral

fragments Solenosmilia

variabilis (red) and Madrepora

oculata (purple) of sediment

core M125-34-2. b The

calculated aggradation rates

(AR) of the different age

clusters in cm ka-1 (orange)

and the coral content in vol%

(grey) are plotted against core

depth. Note for the calculation

of the AR both coral species

were used. Also shown are the

results of the CT-scans with

c sediment surfaces images as

well as d bioclasts[ 2 cm. The

two smaller figures to the right

depict representative intervals

of alternating coral-bearing and

non-coral-bearing intervals.

Below, a picture of the two

cold-water corals Madrepora

oculata (e) and Solenosmilia

variabilis (f) with clearly

different morphologies, which

are identifiable on CT images.

Uncertainties of the 230Th/U

ages are smaller than the dots

(see electronic supplementary

material)
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The intervals without corals can be assumed to reflect

continuous sedimentation for which the minimal rates are

given by the age difference of the oldest and youngest coral

enclosing the section (matrix sedimentation rate, mSR). In

the intervals between the coral-bearing units CIII and Civ

the prominent age reversal inhibits the calculation of a

mSR. Overall, mSR is mostly lower than the coral AR and

varies between 0.5 and 30 cm kyr-1 with an mean of 8 cm

kyr-1 and a median value of 2 cm kyr-1 (Fig. 5). In detail,

mSR is 30 cm kyr-1 between CI/CII and 0.7–0.5 cm kyr-1

between CII/CIII (interrupted by one single coral at 117 cm

with an age of 34.034 ± 0.144 ka). Subsequently, mSR

varies between 6 cm ka-1 between coral units CIV/CV and

2 cm kyr-1 between coral units CV/CVI.

Discussion

Coral mounds off Brazil: temporal development

The first evidence on the temporal occurrence of S. vari-

abilis corals off Brazil presented here strongly supports the

findings of Mangini et al. (2010) and Henry et al. (2014)

and highlights that CWC mound formation at Bowie

Mound shows a tendency to occur in relatively short pulses

of \ 4 kyr. This is different from the general formation

systematics of CWC mounds in the NE Atlantic Ocean

where formation phases during the last 500 kyr occur on

interglacial/glacial time scales, predominantly during

interglacials at latitudes above 45� N and mainly during

glacials at low latitudes less than 37� N (Rüggeberg et al.

2007; Eisele et al. 2011; Frank et al. 2011; Raddatz et al.

2014, 2016; Wienberg et al. 2009, 2010) with continuous

formation phases of[ 50 ka (e.g. Wienberg et al. 2018).

Off Brazil, very little information exists with respect to

the growth of framework-forming CWCs and the formation

of coral mounds. A first study on the temporal occurrence

of D. pertusum and M. oculata has been obtained by

Mangini et al. (2010). They pointed out that corals tend to

occur within Termination I and are synchronous with the

Younger Dryas (YD) cold reversal and Heinrich event 1

(H1). Similar findings have been made for the Mediter-

ranean Sea (McCulloch et al. 2010; Fink et al. 2015;

Taviani et al. 2019; Vertino et al. 2019; Wang et al. 2019).

Desmophyllum pertusum versus Solenosmilia

variabilis: the influence of the coral species

on mound formation

Growth rates of individual S. variabilis have been deter-

mined to vary between 0.8 and 1.25 mm yr-1 in live caught

field samples (Fallon et al. 2014) and between 0.5 and

3 mm yr-1 (1.5 mm on average) in cultivation experiments

(Gammon et al. 2018). These growth rates are similar to the

AR determined here (30 cm kyr-1) and for S. variabilis

reefs on SW Pacific seamounts (21 cm kyr-1; Fallon et al.

2014). In comparison, D. pertusum mounds off Brazil

exhibit ARs an order of magnitude higher with rates of up

to 280 cm kyr-1. The reason for this may be the higher

growth rate of D. pertusum. Norwegian and last glacial

Mauritanian CWC mounds reveal the highest AR of up to

1600 cm ka-1 (Titschack et al. 2015; Wienberg et al.

2018), which is in the same order of magnitude to the

growth rate of individual D. pertusum with up to 2.7 cm

yr-1 (e.g. Gass and Roberts 2011) and therefore may rep-

resent maximal CWC mound AR (Titschack et al. 2015).

Thus, even though S. variabilis mounds are characterized

by a reduced AR compared to D. pertusum mounds, the

Bowie mound may represent nearly maximal AR of S.

variabilis-bearing coral mounds.

Furthermore, the AR are determined in order to obtain

additional information on the processes of mound forma-

tion from the species S. variabilis. In D. pertusum mounds

phases of sustained coral growth are characterized by

active mound formation and phases when coral growth is

absent are characterized by a very low AR or even erosion

(Rüggeberg et al. 2007; Frank et al. 2009; Mienis et al.

2007; Titschack et al. 2015; Wienberg et al. 2018). In

contrast to most of the previously studied sedimentary D.

pertusum mound sequences from the North Atlantic and

also off Brazil (e.g. Mangini et al. 2010; Frank et al. 2011

and references therein; Henry et al. 2014; Wienberg and

Titschack 2017), Bowie Mound sediments reveal inter-

mittent intervals of sediment deposition during phases of

coral absence. In particular, Bowie Mound tends to be a

sediment mound with punctuated occurrences of corals

possibly consolidating the sedimentary environment. This

is because the amount of sediment is greater than the coral-

bearing units, which is different to D. pertusum and M.

oculata mounds (Fig. 5), in which intervals solely con-

sisting of matrix sediments are usually absent (Frank et al.

2011; Titschack et al. 2015; Wienberg et al. 2018). The

calculated mSR at Bowie Mound in such coral-free inter-

vals is considerably lower (8 vs. 30 cm kyr-1) than within

coral-bearing intervals. The mSR of matrix sediments is

calculated based on the constraining coral ages, which

might introduce a slight bias in the calculated SR as pre-

vious studies have shown that matrix sediments and corals

may exhibit considerable age offsets of several hundred

years (López Correa et al. 2012). However, this observa-

tion mirrors previous studies from the E Brazilian margin

where glacial sedimentation is up to 50 cm kyr-1, and thus

an order of magnitude higher than Holocene sedimentation

(Mahiques et al. 2004, 2007). During sea-level lowstands,

the Brazilian shelf was almost entirely exposed leading to

enhanced terrigenous input and increased sedimentation
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rates on the outer shelf (Mahiques et al. 2010; Albuquerque

et al. 2016). At Bowie Mound, the increased sediment

supply during glacial phases is baffled by the CWC

framework leading to higher AR. This is well documented

for D. pertusum mounds, where formation benefits from

strong bottom currents (Rüggeberg et al. 2005; Huvenne

et al. 2009; Raddatz et al. 2011) that enhance organic

matter supply accompanied by increased sediment input,

which is baffled in the coral framework causing enhanced

mound aggregation (Huvenne et al. 2009; Mienis et al.

2007; Titschack et al. 2015). Therefore, our results may

also point to a highly dynamic sedimentation regime, but

also highlight that other CWCs, such as S. variabilis, have

the ability to baffle sediment, resulting in short pulses of

relatively rapid mound formation (Fig. 5).

Today bottom currents along the Brazilian shelf peak

near 800 m water depth and occasionally exceeds

33 cm s-1 associated with the AAIW (Silveira et al. 2004).

Therefore, during periods with 60–90 m lower sea-level

Bowie Mound may have been exposed to stronger hydro-

dynamic conditions and a different intermediate water-

mass regime that favoured sediment and organic-matter

supply to the corals. However, as we are not aware of any

flow speed experiments carried out on S. variabilis, it is

unknown whether high current intensities increase or

reduce the growth of S. variabilis. Desmophyllum pertusum

captures food more efficiently under slower flow velocities

(Purser et al. 2010) and occurs at sites with flow speeds

varying between 5 and 15 cm s-1 (Duineveld et al. 2007;

Mienis et al. 2007). However, there are also reports of very

large D. pertusum colonies that were able to survive at very

high flow velocities of 60 cm s-1 (Mienis et al. 2014).

Thus, we suggest that an increase in flow velocities asso-

ciated with a deepening of the water-mass interface

between SACW and AAIW relative to Bowie Mound

during glacial periods rather actively supported than

diminished CWC growth (see below).

Paleoenvironmental controls on S. variabilis-bearing

mounds

The present physical properties of the AAIW with a sea-

water pH of 7.97, an aragonite saturation (X) of 1.2 (Goyet

et al. 2000), bottom-water temperature of 4.3 �C (Fig. 2;

Bahr et al. 2016), salinity values of 34.3 psu and an oxygen

concentration of 4.2 mg L-1 do not necessarily explain the

currently non-active state of S. variabilis-bearing mounds

off Brazil. Even though framework-forming CWCs may

tolerate a wide range of environmental conditions, recent

studies demonstrate that flourishing CWC habitats appear

to be controlled by very specific environmental and

oceanographic conditions (e.g. Dullo et al. 2008; Flögel

et al. 2014; Hennige et al. 2014a, b), which appear to be

species-specific (Wienberg and Titschack 2017). However,

along the European Continental Margin flourishing CWC

reefs and mounds occur in a narrow seawater density range

of 27.5 ± 0.15 kg m-3 (Dullo et al. 2008; De Mol et al.

2011; Rüggeberg et al. 2011; Flögel et al. 2014; Somoza

et al. 2014; Sánchez et al. 2014). This density envelope

forms due to large differences between two ambient water

masses generating a strong pycnocline that favours the

accumulation of organic matter from sea-surface produc-

tivity and is critical for the food supply to the corals (White

et al. 2007; Dullo et al. 2008; White and Dorschel 2010).

Periods of enhanced aggradation at Bowie mound pre-

dominantly fall into distinct glacial intervals and glacial

terminations characterized by a lower sea level of about

60–90 m (Fig. 6; Rohling et al. 2014) implying a deepen-

ing of the water-mass boundary between the SACW and

the AAIW. Such a water-mass stratification may favour the

supply of particulate organic matter (POM) from high sea-

surface productivity settling at the pycnocline or water-

mass boundaries and then getting distributed by strong

internal waves or along-slope bottom currents (Mienis et al.

2007; White et al. 2007; Rüggeberg et al. 2016). On the

Brazilian shelf the organic-matter (OM) transport is con-

trolled largely by sea-level changes (Albuquerque et al.

2016) and is locally enhanced due to strong sea-surface

productivity (see below). Scleractinian CWCs have been

observed in a number of field and laboratory studies to feed

on a range of different food sources varying from partic-

ulate to dissolved OM (Van Oevelen et al. 2016a, b;

Mueller et al. 2014; Gori et al. 2014; Duineveld et al. 2007;

Kiriakoulakis et al. 2005). Here, we can only speculate

which type of OM may have been the primary source for

enhanced CWC growth and thus mound formation. A

recent study reveals that the upper and middle slope off

Brazil (Camps Basin) between 400 and 1300 m water is

characterized by high total organic carbon and labile lipids

concentrations (Cordeiro et al. 2018) possibly originating

from enhanced primary productivity due to increased

SACW upwelling on the continental shelf (Carreira et al.

2012) and thereby providing high food quality for hetero-

trophic organisms.

High latitude linkages

Enhanced S. variabilis mound formation occurs mostly

during specific intervals of a glacial period, which are

characterized by sea levels of 60–90 metres below present,

increased dust supply recorded in Antarctic ice cores and

increased Fe input in Southern Ocean sediments (Fig. 6;

Rohling et al. 2014; Lambert et al. 2012; Martı́nez-Garcı́a

et al. 2014). Furthermore, these periods are in turn

accompanied by changes in the latitudinal winds zones and

high latitudinal upwelling in the South Atlantic (Anderson
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et al. 2009). Changes of polar upwelling in the Southern

Ocean generally lead to a change in the chemical signature

and nutrient enrichment of intermediate water masses

(Anderson et al. 2009; Kiefer et al. 2006; Sarmiento et al.

2004; Spero and Lea 2002), which can also be traced at

lower latitudes (Poggemann et al. 2017). Nevertheless,

there is an ongoing debate, if there was an enhanced or

reduced AAIW during glacial periods (Pahnke et al. 2008;

Muratli et al. 2010; Ronge et al. 2015).

However, biogeochemical dynamics such as the car-

bonate ion concentration and nutrients have been identified

to contribute to CWC growth (Davies and Guinotte 2011;

Findlay et al. 2014). Furthermore, it was shown that

nutrient enrichments make scleractinian corals less sensi-

tive to changes in seawater aragonite saturation (Langdon

and Atkinson 2005), similar to what has been shown for

food availability in CWC cultivation experiments (Büscher

et al. 2017). Hence, it may be reasonable to speculate that

such additional nutrient enrichments made Brazilian CWC
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Fig. 6 a Corals ages taken from different latitudes are taken from

various publications (Lindberg et al. (2005); López Correa et al. 2012;

Lindberg and Mienert 2005a, b; Lindberg et al. 2007; Raddatz et al.

2014, 2016; Titschack et al. 2015; Hovland et al. 1998; Hovland and

Mortensen 1999; Schröder-Ritzrau et al. 2005; Mikkelsen et al. 1982;

Douarin et al. 2013; Mienis et al. 2009; Frank et al. 2009, 2004;

Dorschel et al. 2007; Eisele et al. 2011; De Mol et al. 2011; Wienberg

et al. 2009, 2010; Wienberg et al. 2018a, b; Frank et al. 2011;

McCulloch et al. 2010; Wefing et al. 2017; N C 600) and are plotted

without uncertainties. b The coral ages of Mangini et al. (2010, D.

pertusum, blue) and this study (S. variabilis, red and M. oculata

purple) are plotted as numbers at age. Uncertainties of the 230Th/U

ages are smaller than the dots (Supplementary Table 1). c To track

changes of the southern High latitude the sea-salt free Ca2?

concentration in the DOME C (EPICA) ice core from Lambert

et al. (2012, black) is plotted as well as the sea-level curve of Rohling

et al. (2014, orange). Black arrows indicate periods of mound

formation pulses associated with sea-level stands 60–90 m lower than

today and an enhanced dust input at the higher latitudes. Marine

Isotope Stages (MIS) boundaries are taken from Lisiecki and Raymo

(2005), except for the Pleistocene/Holocene boundary at 11.7 ka

(Walker et al. 2012)
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less sensitive to the generally CO2 enriched AAIW (Allen

et al. 2015) and thereby fostered CWC mound formation.

Moreover, nutrient-rich intermediate water masses may

have also fed thermocline waters at low latitudes (Raddatz

et al. 2017), especially in upwelling regions (Kiefer et al.

2006; Sarmiento et al. 2004; Spero and Lea 2002). Such a

scenario would also have ultimately facilitated CWC

growth by increasing sea-surface productivity. Thus, even

though the reason remains unclear, our data points to a

linkage between Brazilian coral provinces and changes in

the biogeochemical dynamics of intermediate water masses

of southern origin.

Overall, our findings reveal that also other CWCs

besides Desmophyllum pertusum and Madrepora oculata

may at least contribute to the formation of large mound-

like structures. However, as this study is only based on one

sediment core, there is an urgent need to further sample

different mounds (formed by different species) and mound

provinces from different latitudes and different water

depths along the Brazilian/Argentinian margin to clarify

whether SE American coral mounds may have moved their

biogeographical limit and/or water depth through time,

similar to their North Atlantic counterparts.
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Blamart D, Hatté C (2011) Northeastern Atlantic cold-water

coral reefs and climate. Geology 39:743–746

Freiwald A (2002) Reef-forming cold-water corals. In: Wefer G,

Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering
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